新闻 | 滚动 | 上海 | 政务 | 评论 | 国内 | 社会 | 政法 | 国际 | 军事 | 财经 | 体育 | 娱乐 | 历史 | 汽车 | 图片 | 视频 | 曝光 | 微博 | 专题 | 旅游 | 彩票 | 藏品 | 健康 | 百货 | 导购
奥迪A3三厢
19.40-25.80万
(参考成交价)
车市行情
车型 优惠
赛欧 2
POLO 1.7
DS 4s 4
晶锐 1.3
熊猫 0.4
骊威 1.1
MINI CLUBMAN 5.78
瑞纳 0.7
车型 优惠
福睿斯 1.8
传祺GA3S 1
名图 2.5
速锐 0.3
昕动 0.8
花冠 1.6
6.15
英朗 3.3
车型 优惠
传祺GA6 1
君越 3.4
标致508 4.5
凯迪拉克ATS-L 3
雅阁 3
君威 3.9
帕萨特 3.1
迈锐宝 4.01
车型 优惠
奥迪A8 39.3
捷豹XJ 38.3
宝马6系 3
凯迪拉克XTS 4
林肯MKS 3
Panamera 96
玛莎拉蒂Ghibli 16
捷豹XF 21.5
车型 优惠
奔驰GLE 6
极光 13
Tiguan 5.2
TRAX创酷 1.3
荣威W5 1.4
标致3008 1
揽胜运动版 3.8
兰德酷路泽 8.6
车型 优惠
上汽V80 0.5
埃尔法 0.8
普瑞维亚 1.7
马自达8 2.5
别克GL8 3.1
夏朗 4.7
奥德赛 3.5
艾力绅 2.51

基于AMESim的纯电动汽车热管理系统的优化设计

2018-11-29 20:24 来源: 焉知汽车科技新媒体

摘要:基于AMESim软件建立了完整的纯电动汽车的热管理系统模型,并通过整车实验验证了模型的正确性.在此模型的基础上,本文分别对水冷系统、高温环境下的热管理系统及爬坡工况下的热管理系统进行了优化设计,并对热管理系统的控制策略进行了优化,使热管理系统能适应不同工况和环境温度的整车热管理要求.本文基于AMESim软件对纯电动汽车的热管理系统进行优化设计的方法为研究和开发纯电动汽车的热管理系统提供了思路和参考。

0引言

纯电动汽车是未来汽车发展的重要方向,也是目前发展最快的新能源汽车之一.为了系统地研究纯电动汽车的能量流动,需要对它建立完整的热管理系统.这不仅是汽车零部件散热的需求,更是提高整车能源效率的重要手段.

本文利用AMESim软件搭建了一套比较完整的纯电动汽车热管理系统的仿真模型,并通过实验验证模型的正确性,并在此模型基础上对整车热管理系统进行优化设计.

1纯电动汽车热管理的要求

本文研究的纯电动汽车的参数如表1所示.

基于AMESim的纯电动汽车热管理系统的优化设计

本文研究的整车热管理系统主要包括两部分:电动汽车前舱水冷系统和电池包风冷系统.其中水冷系统的结构如图1所示。

基于AMESim的纯电动汽车热管理系统的优化设计

根据汽车的运行情况,水冷系统有两路循环.在汽车刚起动或者低速运行时,发热部件的散热量较小,这时冷却水使用小循环,即经过水泵后,冷却水依次流过电压转换器(DC/DC)、电机控制器(MC)、电机(Motor),然后由支路流入乘员舱的空调加热系统,使车厢内部温度迅速升高,提供乘员的舒适性.当汽车加速或爬坡时,发热部件的散热量较大,冷却水经过水泵后,依次流过发热部件,冷却水温升高,这时支路阀门关闭,使冷却水流过散热器散热,降低冷却水温度.如果车速较低或散热器散热能力不足时,打开散热器后的冷却风扇,加快空气流动,提高散热器的散热能力,并迅速降低水温,控制电机等发热部件的温度,使汽车正常行驶.本研究使用的电机可承受的最高温度是120℃,为了安全及高效地运行,需将电机出水口的冷却水温度控制在80℃以内,电机控制器出水口的冷却水温度控制在75℃以内,DC/DC转换器出水口的冷却液温度控制在72℃以内,而散热器出水口的温度要低于70℃.其中,电机的温度为我们控制的重点。

另一个为电池包风冷系统.电池包的散热方式为风冷散热.冷空气从后备箱左侧入口进入电池包内部,散热结束后从右侧出风口排出,风机放置在后备箱右侧,具体流向见图2.通过风冷的方式,控制电池包的进风量,使电池包的内部温度保持在20℃~50℃之间,并控制其内部温差在5℃以内,使电池的工作性能达到最佳状态。

基于AMESim的纯电动汽车热管理系统的优化设计

2基于AMESim软件的整车热管理系统建模

本文首先利用AMESim仿真平台搭建了纯电动汽车的整车模型,然后分别搭建了包括水冷系统和电池包风冷系统在内的热管理系统模型,然后将已经搭建的水冷系统模型和电池包风冷系统模型与整车系统模型相结合,将整车仿真中电机、电机控制器、电压转换器的发热量作为输入值,输给水冷系统模型;将电池的散热量作为一个输入值,输给电池包风冷系统模型,然后制定相关的控制策略,对电机、电池进行温度控制.这样就形成了一个合理的、比较完整的整车热管理系统仿真模型,如图3所示。

基于AMESim的纯电动汽车热管理系统的优化设计

在各部件按照设计选取的型号的参数设置完成后,采用FTP-72循环测试工况对模型进行仿真计算.与此同时,也对实车的热管理系统进行了实验,采集实验数据.测试和仿真的环境温度为25℃,标准大气压,时间为1370s。

3仿真与实验验证

3.1水冷系统的仿真与实验验证

在FTP-72工况下,电机控制器的散热量约为300W到1500W之间,电机的散热量约为500W到2000W之间,再加上电压转换器DC/DC和一些低压供电系统的散热量,约1000W左右,这些热量即为冷却水系统的热负荷,需要通过散热器和风扇将热量传递到环境中。

运行过程中,温度传感器采集电机出水口的冷却水温度,将冷却水温传递给中央控制器,控制水泵、风扇的转速和流量以及阀门的开度.水冷系统的控制策略如表2所示。

基于AMESim的纯电动汽车热管理系统的优化设计

在此控制策略下,我们将仿真结果和实验测得的电机出水口的冷却水温度进行对比,如图4所示。

从图4可以看出,在FTP-72工况下,环境温度为25℃时,经过实验采集的电机出水口的冷却水温度与仿真计算的温度差值最大为5℃,误差百分比平均约为6%左右.此结果说明通过AMESim搭建的纯电动汽车热管理系统具有比较可靠的仿真结果,可以较准确地计算出冷却水的流动状态和最高温度.本研究选用的电机出水口的冷却水最高温度可达到80℃,在此控制策略下,电机出水口的冷却水温度(低于65℃)远远低于最高温度,而且整个循环工况,风扇一直未启动.这说明原来的系统设计采用的水泵,风扇等部件还有进一步选型优化的空间。

基于AMESim的纯电动汽车热管理系统的优化设计

1 2 3 下一页
热门推荐
查看更多精彩