新闻 | 滚动 | 上海 | 政务 | 评论 | 国内 | 社会 | 政法 | 国际 | 军事 | 财经 | 体育 | 娱乐 | 历史 | 汽车 | 图片 | 视频 | 曝光 | 微博 | 专题 | 旅游 | 彩票 | 藏品 | 健康 | 百货 | 导购
奥迪A3三厢
19.40-25.80万
(参考成交价)
车市行情
车型 优惠
赛欧 2
POLO 1.7
DS 4s 4
晶锐 1.3
熊猫 0.4
骊威 1.1
MINI CLUBMAN 5.78
瑞纳 0.7
车型 优惠
福睿斯 1.8
传祺GA3S 1
名图 2.5
速锐 0.3
昕动 0.8
花冠 1.6
6.15
英朗 3.3
车型 优惠
传祺GA6 1
君越 3.4
标致508 4.5
凯迪拉克ATS-L 3
雅阁 3
君威 3.9
帕萨特 3.1
迈锐宝 4.01
车型 优惠
奥迪A8 39.3
捷豹XJ 38.3
宝马6系 3
凯迪拉克XTS 4
林肯MKS 3
Panamera 96
玛莎拉蒂Ghibli 16
捷豹XF 21.5
车型 优惠
奔驰GLE 6
极光 13
Tiguan 5.2
TRAX创酷 1.3
荣威W5 1.4
标致3008 1
揽胜运动版 3.8
兰德酷路泽 8.6
车型 优惠
上汽V80 0.5
埃尔法 0.8
普瑞维亚 1.7
马自达8 2.5
别克GL8 3.1
夏朗 4.7
奥德赛 3.5
艾力绅 2.51

锂离子电池硅基负极材料的纳米化和合金化探索

2018-06-29 14:52 来源: 集邦新能源网

1 前言:锂离子电池具有无记忆效应、自放电小、电压高、循环寿命长、环境友好等优点,是目前消费类电子产品的主要电源,正逐步向混合动力汽车、纯电动汽车和大规模储能领域扩展。现有的商业化锂离子电池大多采用石墨作为负极材料,但其理论电化学储锂容量仅为372 mAh /g,远不能满足锂离子电池进一步提高能量密度的需求。因此,发展新型高容量锂离子电池负极材料迫在眉睫。

Si作为锂离子电池负极材料,具有以下优点:

① 储量丰富,在自然界中,Si占地壳总质量的四分之一以上。

② 原料成本低,且提 炼Si的工艺相当成熟。

③ 电化学储锂容量高。根据 Li-Si 合金相图,Li最多可与Si形成化学计量比为Li22 Si5的合金,最高的理论电化学容量可达 4199 mAh /g。实验结果显示,在室温下,Si的电化学嵌锂产物是化学计量比为 Li15 Si4的合金,相应 的理论电化学容量为3579 mAh/g,接近石墨负极材料的10倍。

④ 充放电电压平台较低,对锂电位为~0.5V,表面析锂可能性小,安全性要优于石墨材料。

基于以上优点,Si被认为是最具发展潜力的一种新型高容量锂离子电池负极材料。然而,在电化学储锂过程中,Si与Li结合形成合金相过程的体积变化高达400%,巨大的体积效应会造成严重的机械应力,导致硅颗粒出现粉化,降低电极活性材料颗粒之间以及活性材料与集流体之间的电接触性能,使充放电过程中不能进行完全的脱嵌锂,电极的循环可逆容量迅速下降。

同时,颗粒粉化使得Si负极材料不断暴露出新鲜表面,其与电解质反应形成SEI膜,导致合金的本征容量下降和电解质损失。此外,Si的导电性能较差,电导率仅为6.7×10-4S/cm,严重影响其动力学性能。这些缺点大大阻碍了Si基锂离子电池负极材料的实用化进程。

为了改善Si负极材料的电化学储锂性能,研究人员开展了大量的研究工作,其中,纳米化和合金化被证 明是改善Si基锂离子电池负极材料的两种重要途径。

一方面,通过制备纳米结构的Si,可以有效缓解体积膨胀所导致的颗粒粉化、有效缩短锂离子的扩散距离,从而改善电极的循环稳定性能。

另一方面,通过与其它金属形成Si基合金,可以缓解材料在嵌脱锂过程中的内应力、提高材料的电导率。又因为Si合金的振实密度较高、成本较低、易于规模化制备,故而可以大幅度改善Si基负极材料的综合电化学性能。本文重点总结了近5年在纳米化和合金化改善Si基锂离子电池负极材料方面的研究进展。

2 纳米结构

Si基锂离子电池负极材料纳米化是目前改善Si基锂离子电池负极材料的最有效方法。利用不同的制备方法,可以获得不同维度、形貌各异的纳米Si材料,利用其特殊的纳米结构和形貌,可以减小嵌脱锂过程的体积膨胀,缓冲内应力,从而改善负极材料的电化学循环稳定性能。同时,纳米结构内部的孔洞可以促进电解液的渗透,缩短锂离子的扩散距离,也有利于提高Si基负极材料的嵌脱锂动力学性能。

广泛研究的纳米Si基锂离子电池负极材料主要包括零维的Si纳米颗粒、一维的Si纳米线和纳米管、二维的Si纳米薄膜以及三维的多孔纳米Si等。近年来,基于纳米化方法,Si基复合材料的研究取得了一些重要进展。

2. 1 Si 基零维纳米结构及其复合材料

Si纳米颗粒的自身应力小、机械强度高,进一步与能够起到缓冲作用的基体复合,可以很好地缓解体积膨胀、释放内应力,从而大幅度提高其电化学性能。为了改善空心核-壳结构的电化学性能,Liu等合成了一种蛋 黄-蛋壳式结构的纳米颗粒Si/C复合电极材料(如图1)。这种结构是由一层很薄、稳定、自支撑的碳壳保护着内部的Si颗粒。中空结构能够很好地缓冲体积膨胀效应,表现出很好的循环稳定性( 400 mA/g下首次容量为2833mAh/g,1000次循环后的容量保持率为74% )和很高的库伦效率(99.84% )。

1 2 3 4 5 ... 8 下一页
热门推荐
查看更多精彩