新闻 | 滚动 | 上海 | 政务 | 评论 | 国内 | 社会 | 政法 | 国际 | 军事 | 财经 | 体育 | 娱乐 | 历史 | 汽车 | 图片 | 视频 | 曝光 | 微博 | 专题 | 旅游 | 彩票 | 藏品 | 健康 | 百货 | 导购
奥迪A3三厢
19.40-25.80万
(参考成交价)
车市行情
车型 优惠
赛欧 2
POLO 1.7
DS 4s 4
晶锐 1.3
熊猫 0.4
骊威 1.1
MINI CLUBMAN 5.78
瑞纳 0.7
车型 优惠
福睿斯 1.8
传祺GA3S 1
名图 2.5
速锐 0.3
昕动 0.8
花冠 1.6
6.15
英朗 3.3
车型 优惠
传祺GA6 1
君越 3.4
标致508 4.5
凯迪拉克ATS-L 3
雅阁 3
君威 3.9
帕萨特 3.1
迈锐宝 4.01
车型 优惠
奥迪A8 39.3
捷豹XJ 38.3
宝马6系 3
凯迪拉克XTS 4
林肯MKS 3
Panamera 96
玛莎拉蒂Ghibli 16
捷豹XF 21.5
车型 优惠
奔驰GLE 6
极光 13
Tiguan 5.2
TRAX创酷 1.3
荣威W5 1.4
标致3008 1
揽胜运动版 3.8
兰德酷路泽 8.6
车型 优惠
上汽V80 0.5
埃尔法 0.8
普瑞维亚 1.7
马自达8 2.5
别克GL8 3.1
夏朗 4.7
奥德赛 3.5
艾力绅 2.51

技术究竟能否完全让自驾车事故悲剧不再发生?

2018-04-11 11:29 来源: EET电子工程专辑

Uber的自动驾驶车辆上个月在美国发生撞人致死案件,笔者当时写了一篇报导“自动驾驶车们,请先跑完仿真再上路测试好吗?”;在文章发表之后,高通(Qualcomm)的人工智能(AI)研发业务开发负责人Rick Calle做出回应,问了我以下的问题:

Uber撞人事件是第一场悲剧,我们该如何让它变成最后一场?我非常确定他们也用了仿真软件,但大家是否仿真了传感器故障的情况、因为距离使得光达(Lidar)采样稀疏的效应,还有其他不可预测的事件?

Calle的问题指出了测试自动驾驶车辆绝非易事,要验证自驾车不只是能运作,各种功能还必须安全运作,需要前所未有的工程严谨度;测试人员不仅得确定需要模拟的内容,也要确保模拟过程使用了高保真度的感测数据。接着必须拟定测试计划,以便为车辆供货商提供足够可证明的安全性能指针。

不过,在了解模拟/测试方法的细节之前,知道一件事情很重要──我们今日所知的“自动驾驶”仍然不成熟。

美国卡内基美隆大学(Carnegie Mellon University)教授Philip Koopman在最新的一篇部落格文章中写道,在Uber事故导致行人Elaine Herzberg身亡的并非全自动驾驶车辆,她是受害者,是因为一辆仍在开发阶段的“未经实证的测试车”,还有“应该要确保技术故障不会导致伤害的那个安全驾驶”。

让我们一起想想…过去一年半以来,科技业者(还有媒体)忙着促成全自动驾驶车辆的即将实现,却漠视了无数挥之不去的、关于自动驾驶的“未知”;这里的“未知”,我指的是自动驾驶车辆所衍生出的、科技产业几乎还未开始处理的议题,更不用说提出因应策略。

我们询问过数个产业界消息来源──从算法开发者、测试专家,到嵌入式系统软件工程师,他们仍认为开发“安全的”自动驾驶车辆是一个不确定的议题或挑战,虽然他们的回答各异,却都坦承自驾车还有很多议题,有待来自科技与汽车产业的回答。

预测性感知

自驾车技术开发商DeepScale执行长Forrest Iandola在谈到Uber事故时表示,除非Uber公布行车纪录器以外的数据──包括车上的雷达与摄影机在事故发生时所看到的──外界人士可能永远不会知道事故发生原因:“我们需要透明的信息,不然很难知道他们的感知系统、动作规划或是地图绘制等功能究竟哪里出错。”

DeepSale是一家成立于2015年的新创公司,专门为先进驾驶辅助系统(ADAS)与自动驾驶车辆开发深度学习感知软件;根据该公司已经学到的经验,Iandola解释,大多数为自驾车设计的感知系统是产业界与学术界“精心打造”,举例来说,光达已经可以清楚辨识3D目标物的形状,同时自驾车的“语义”(semantic)感知在物体分类方面也有所改善。

不过仍缺乏的,是“预测性感知”(predictive perception);Iandola指出:“预测性感知技术的研发几乎还没开始。”

举例来说,如果自驾车不能预测某目标物在5秒后的可能位置,就不能决定是否该煞车或转向,甚至是在看到该目标物体后。“在运动规划与预测性信息之间需要一个标准接口,”Iandola表示:“如果这个问题没有解决,我得说要实现Level 4自驾车真的很困难。”

极端案例能模拟吗?

在公开道路上测试自动驾驶车辆之前的模拟显然非常重要,但更重要的是实际上如何模拟。安全自动驾驶车辆系统开发商Edge Case Research共同创办人暨执行长Michael Wagner表示,对自驾车开发者来说有一个坏消息是,尽管累积了数十亿英哩的模拟驾驶里程,也不一定能涵盖自驾车可能遭遇的所谓“极端案例”或“边缘案例”。

在过去几年,深度学习芯片供货商耗费大量资源,宣传深度学习算法可能实现全自动驾驶系统,这种算法可能让自驾车发展出类似人类的能力,能在不需要知道每一种可能情况的前提下识别不同图形。

1 2 下一页
热门推荐
查看更多精彩